Expected Value of the Sample Variance

Peter J. Haas

January 25, 2020

Recall that the variance of a random variable X with mean μ is defined as $\sigma^{2}=$ $\operatorname{Var}[X]=\mathrm{E}\left[(X-\mu)^{2}\right]=\mathrm{E}\left[X^{2}\right]-\mu^{2}$. Given i.i.d. samples X_{1}, \ldots, X_{n} from the distribution of X, we estimate σ^{2} by $s_{n}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\mu_{n}\right)^{2}$, where $\mu_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ is the usual estimator of the mean μ. We show that s_{n}^{2} is an unbiased estimator of σ^{2}, in that $\mathrm{E}\left[s_{n}^{2}\right]=\sigma^{2}$.

To simplify things, note that the variance of a random variable X is unchanged if we subtract a constant $c: \operatorname{Var}[X-c]=\operatorname{Var}[X]$. We can choose $c=\mu$, and hence can assume without loss of generality that $\mathrm{E}[X]=0$. It follows that

- $\mathrm{E}\left[X_{i}\right]=0$ for $i=1,2, \ldots, n$;
- $\mathrm{E}\left[X_{i}^{2}\right]=\mathrm{E}\left[X_{i}^{2}\right]-0=\mathrm{E}\left[X_{i}^{2}\right]-\mathrm{E}\left[X_{i}\right]^{2}=\sigma^{2}$ for $i=1,2, \ldots, n$; and
- $\mathrm{E}\left[X_{i} X_{j}\right]=\mathrm{E}\left[X_{i}\right] \cdot \mathrm{E}\left[X_{j}\right]=0 \cdot 0=0$ for $1 \leq i \neq j \leq n$,
where we have used the fact that the X_{i} 's are mutually independent.
Next observe that

$$
\begin{aligned}
\mathrm{E}\left[\mu_{n}^{2}\right] & =\mathrm{E}\left[\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}\right)^{2}\right]=\mathrm{E}\left[\frac{1}{n^{2}} \sum_{i=1}^{n} X_{i}^{2}+\frac{2}{n^{2}} \sum_{i \neq j} X_{i} X_{j}\right] \\
& =\frac{1}{n^{2}} \sum_{i=1}^{n} \mathrm{E}\left[X_{i}^{2}\right]+\frac{2}{n^{2}} \sum_{i \neq j} \mathrm{E}\left[X_{i} X_{j}\right]=\frac{1}{n^{2}}\left(n \sigma^{2}\right)+\frac{2}{n^{2}} \cdot 0=\frac{\sigma^{2}}{n} .
\end{aligned}
$$

Putting everything together and noticing that $\sum_{i=1}^{n} X_{i}=n \mu_{n}$, we have

$$
\begin{aligned}
\mathrm{E}\left[s_{n}^{2}\right] & =\mathrm{E}\left[\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\mu_{n}\right)^{2}\right]=\frac{1}{n-1} \mathrm{E}\left[\sum_{i=1}^{n}\left(X_{i}^{2}-2 X_{i} \mu_{n}+\mu_{n}^{2}\right)\right] \\
& =\frac{1}{n-1}\left(\sum_{i=1}^{n} \mathrm{E}\left[X_{i}^{2}\right]-2 \mathrm{E}\left[\mu_{n} \sum_{i=1}^{n} X_{i}\right]+n \mathrm{E}\left[\mu_{n}^{2}\right]\right) \\
& =\frac{1}{n-1}\left(\sum_{i=1} \mathrm{E}\left[X_{i}^{2}\right]-2 n \mathrm{E}\left[\mu_{n}^{2}\right]+n \mathrm{E}\left[\mu_{n}^{2}\right]\right)=\frac{1}{n-1}\left(n \sigma^{2}-n \mathrm{E}\left[\mu_{n}^{2}\right]\right) \\
& =\frac{1}{n-1}\left(n \sigma^{2}-n \cdot \frac{\sigma^{2}}{n}\right)=\sigma^{2} .
\end{aligned}
$$

